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Let us assume the accuracy to be 3% for the hypothesis of shear stresses, therefore ¢ =
=0.03, Let us present values of p calculated from (3, 4) for some values of A,

M=005 04 0.3 0.5 0.7 0.9 0.95
p <12 3 3-10-t 9.10"* 3.10* 7.40~® 3.3.10®
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ON THE STABILITY OF COMPRESSED BARS

PMM Vol, 34, M5, 1970, pp. 877-884
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(Rmtcv-cn-Donl
(Received April 27, 1970)
The problem of the stability of an incompressible elastic bar of variable stiffness, com-
pressed along the axis, is considered, The validity of linearization is proved, and the
equilibrium modes after buckling are investigated,

After reduction of the appropriate boundary value problem to an equation with a com-
pletely continuous operator, a theorem of Krasnosel'skii [1] on bifurcation can be applied.
In utilizing this theorem the proof of thé simplicity (or odd multiplicity) of the eigen-
value of the corresponding linearized problem is the principal difficulty,

The case of hinged supports of the bar ends was considered in [2]. In this case the
linearized equation is of second order, and the simplicity of the eigenvalues results from
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the Sturm-Liouville theory, More complex support cases are considered herein (Sect, 2),
and the spectrum of the differential equation Au = ABu must be investigated, where 4
is a fourth order differential operator, B is of second order, This equation reduces to
the equation Nu == Au, where N is a second order differential operator, A problem with
non-Sturm boundary conditions can occur for this reduction, In this case, the results of
Kalafati on second order differential operators [3] can be used to prove the simplicity

of the spectrum,

Let us note that the validity of linearization in the plate stability problem was given
a foundation by the author of [4](*).

The nature of the bifurcation of the even equilibrium modes of a symmetric bar is
investigated in Sect, 3, It is shown by the Liapunov-Schmidt method that the membrane
state of stress of the bar loses stability when the loading parameter becomes greater than
the first eigenvalue of the linearized problem (Euler critical force), Two new equilib-
rium modes hence occur,

It has also been established that buckling is of Euler character; there are no other
equilibrium modes, except the membrane mode, when the loading parameter is less
than the Euler critical force,

The example (3, 9) shows that odd equilibrium modes can occur in the elastic support
case for subcritical values of the loading parameter,

1, Bquilibrium squation and boundary conditions, Let usconsider
an incompressible elastic bar of variable cross section, clamped elastically in elastic
supports, The bar is compressed by two horizontal forces A applied to the ends, Let us
introduce the following notation: E is the Young's modulus of the bar material, § the
arclength of the bar measured from some fixed point, J (s) the moment of inertia of
the bar section at the point s, The function y (s) is the deflection of the bar measured
from the membrane equilibrium state,

The potential energy of a bent bar is

EJy"  — 2
=1/, S Tl ds— Q (1 — VI=7Rds + Yamuy® (— 1) + Yy (1) +
-1 4
+ Yamiaresin® y’ (— 1) + Ysmy aresin® y' (1) (1.1)
where a; > 0 and g, >> 0 are the coefficients of elasticity of the supports, y, > 0 and
T2 > 0O the coefficients of elasticity of the clamping,
The condition of extremum of the energy 7 = ( results in the equilibrium equation

d 1 d Ely d v
TV d Ve T e (1.2)
and the boundary conditions
d EJy” — T ’ d EJy” T ’
Y= W T e i = e VIV 0 e
EJy" v— 4 * EJ!/" I3 ’
Vi = Ty aresin y’ sy, -VT—-_-—?; = — rparesiny’ [y (1.3)

*) L1 VOROVICH: Some Mathematical Questions of the Nonlinear Theory of Shells,
Dissertation, Leningrad State University, 1958,
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In the case of rigid clamping of both ends of the bar (@, = a; = T, = 7, = oc0)
the boundary conditions are YEFE)=y (F1)=0 (1'4)

If the left end of the bar is rigidly clamped, and the right end is hinge supported
(a1 = 7y = @, = oo, Tg = 0), we have

yFH=y (1) =y" 1) =0 (1.5)

The problem under consideration is conservative for any of the boundary conditions
(1.3),(1.4). (1. 5).

Let the bar be compressed by the follower farces A applied to the ends, i, e, forces

whose direction (at each instant) agrees with the tangent to the elastic line of the bar,
Such a system is nonconservative, The boundary conditions hence are (L.6)

d __EJy" p—s i _EJy —_
Ty =WV = et &y = V=7

Ejy' . ’ Ejyu )
= 7y Aresin ¥’ Jsment, ~ -
7 g T1 Y femmt Vi—r == == Y3 ATCSIN Y [sumt

2. On the bifurcation of the equilibrium of a bar of variable
stiffness, 2.1°, Reduction to an operator equation, The nonlinear
equilibrium equation (1.2) is a particular case of the equation

(EIYY +M =[(49,¥.¢9" M) (2.1)

f (89 t?ls ty’, f?l", ty’”’ ]"} — 0)
4

(lim

t—0

where f(s,y, ¥,y ,¥"’', A) is a function of its arguments continuously differenti-
able for |s] < 1 and sufficiently small y, 3, "', ¥'"'.

Inverting the linear part of the differential operator (1,2) for A =0, we réduce each
of the boundary value problems (1. 3)~(1.6) to an operator equation of the form y ==
= K (y, \) with completely continuous operator in C@ (~1, 1) .

For example, the operator K in the cases (1,4),(1,5) is

i i
K@) ==2\Geiyr@®d+ {660fEny, vy N (2.2)
-1 -1

where G (s, &) is the Green's function for these boundary conditions, The Fréchet deri-
vative of the operator K at the point y = 0 is a linear operator

i
Gy ==4) CEHY O (2.3)

According to the theorem of Krasnosel'skii [1], each odd-multiple characteristic num~
ber of the operator G is a point of bifurcation of the operator X, where a continuous
branch of the eigenvectors of the operator K corresponds to this bifurcation point.

2.2%, Spectrum of the linear problem and bifurcation, The eigen-
value problem for the operator (2, 3) is evidently equivalent to the spectral problem for
the linearized equation (EJy"Y' = — My 2.4)

with linearized boundary conditions, Conditions (1.4) and (1, 5) hence remain unchanged,
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but conditions (1, 3) and (1.6) are reduced to the following:

(BTY") = — aylf — MY o=ty (BJY") = ag¥ — My |smt (2.5)
EJy” == le’ ‘s=—1, EJy” = - Tay’ ‘s::i

(EJY"Y = ~—a3¥ fs=-t, (BJY") = agl st (2.6)
EJy" =11y |s=1, EJy = — 1oy le=t

The existence of an infinite sequence of positive eigenvalues of Eq, (2, 4) with the
boundary conditions (2, 5), (1. 4), (1. 5) results from known variational theorems [5],

Theorem 2.1, The problem (2,4),(1.5) has an infinite sequence of eigenvalues,
All the eigenvalues are positive, simple, and are bifurcation points of the nonlinear ope~
rator K.

Proof, Integrating (2,4) twice we obtain
E Jy" + Ay = Aeys + heg (2.7)
Making the substitution y(s) = v(s) + ¢,5 -+ ¢, in the equations and boundary conditions,
and eliminating the unknown constants ¢, and ¢;, we obtain the equivalent Sturm- Liou~
ville problem ;. + A =0, vf—1)+20'(—1)=0, ov{l)=0 ‘ (2.8)
The corresponding Green's function is oscillating (see [6]), and hence, all the eigen-
values are positive and simple,

2.3°, Let us utilize the results of Kalafati [3] in investigating the problem (2, 4), (1.4).
The second order differential equation

Ly=22(x)y
Ly = —djdz(py’) +qy, P@)>0, ¢@@)>0 (<2<
with the boundary conditions

oy (@) +a,y (@) +Buy (b) + By By =0
Oy ¥ (@) + @y @) +PBuy (@) +Buy B) =0 2.9

is considered in this work,

The following sufficient conditions are given in [3] for the Green's function of the
operator L to be an even or odd X ~kernel,

The matrix of the coefficients of conditions (2, 9) is

(2.10y

aan as Bu B

on Oz Ba Be

Let the symbol {i, k} be the second order determinant of the matrix (2.10)into whose
composition columns with the numbers { and k (i <C k) enter, If the conditions

2440, {24 -{1,21>0 (2.11)
are satisfied, the Green's function of the operator Z is an odd K~kernel, 1If

the Green's function is an even K-kernel,
Theorem 2.2. The problem (2.4), (1.4) has an infinite sequence of eigenvalues,
All the eigenvalues are not more than double: 0 << Ay <Ay < Mg < A < ...} the

appropriate eigenvalue has no more than n -}~ 3 zeros for even n, and no more than
n -+ 2 zeros for odd n in the interval (-1, 1).
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Proof, Asin the proof of Theorem 2,1, let us turn to the consideration of the second
order problem
EJv" 4 Mo = 0, p(1) = ®{—1) = 2'(1), v'(1) — o’ (—1) =0 (2.43)

The boundary conditions of the problem (2,13) are non-Sturm conditions, It follows
from (2, 12) that the Green's function of the operator EJv" is an even K-kernel, There-
fore, all the eigenvalues are not more than double

0<h MM <<
and hence the nth eigenfunction v, has n or n 4 1 zeros forevenn, and has n orn — 1
zeros for odd n. Hence, by Rolle’s theorem, we obtain an estimate of the number of zeros
of the eigenfunction y,.

2.4°, Let us consider a symmetric bar (J (s) = J (— §)) compressed by horizontal
forces A, Hence, @, = a, and y; = ¥, in the appropriate boundary conditions (1, 2)
and (2.5). Writing the function f (s, y, ', ¥'’y ¥’’’, M) in Egs, (1.2), it is easy to see
that the operator (Fy) (s) = f(s, ., ¥'» ¥, ¥’y A) transforms the even function
y (8) into even, and the odd into odd., Let us investigate symmetric equilibrium modes
of the bar, To do this let us consider the problem (2.4}, (2. 5) in the subspace of even

functions, }
Theorem 2.3, The problem (2,4),(2.5) has an infinite sequence of eigenvalues

in the subspace of even functions, All the eigenvalues are positive, simple, and are bifur~

cation points of the operator X.
Proof, As in the preceding theorems, let us turn to the equivalent problem for A=k(

EIV' +hw =0, /(1) =n(1), v (0)=0 (2.14)
Let us show that the problem (2. 14) can be reduced to a loaded integral equation with
monotonely increasing function ¢ (§)-and oscillating kernel, Since A, = 0 is an eigen-
value of the problem (2, 14), it is convenient to introduce the parameter u by setting
A = p — e. The problem (2,14) then becomes
BvsEJv' —ev=pv, (1) +ev{l)=pr{) v 0) =0 (2.15)
The Green's function of the boundary value problem (2,15) is
vi(s) 72(8) (O<s<<ESY N
Ceo8) = mmm 0<t<i<h (2.15)

The functions p,and v, satisfy the conditions
Bv, =Bv, =0, yo," (1) +evy’ 1) =0,/ (0) =0, vy vy — vy, =1
The solution of the problem (2,185) is
1

v =p{GEBrERB—wB)b () 247y
¢
% () = — G (s, 1) yEJ (1) (2.48)
Substituting (2. 18) inm1 (2.17), we obtain
v(e)=n{G (5,8 v @& + 06 (5, DYIET (N)v (D =

where

1 0<<ELY)
=p S G(s,E)vE)ds(®), (B = {i +E7U(M) E=1Y

o
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The Green's function ¢ (s, §) is oscillating [6]. The assertions of the theorem result
from the theory of charged integral equations with oscillating kernel [6].

Note, That the Green's function of the problems (2. 8) and (2,15) is oscillatory per-
mits the proof that the nth eigenfunction of the problems (2. 4), (1. 5) and (2.4),(2.5)
has no more than n zeros in the interval (—1, 1).

The relation 1
= A S G vn (8) dl 249
Yn (‘) £ : (" E) EJ (E) E ( )

follows from (2.4).

According to the earlier proof, the function v,_‘(E,) has n zeros in the interval (—1, 1).
According to results of Krein [8], it follows from (2,19) that y,(s) has no more than -
zeros in the interval (—1, 1).

The problem (2.4), (1.4) can be examined separately in subspaces of even and odd
functions, Theorems analogous to Theorem 2,3 are obtained in such an investigation
of the symmetric and antisymmetric equilibrium modes of a bar,

8, Bifurcation, Theorem 8,1, Inthe case of the support conditions (1, 3)
and (1, 4), no equilibrium mode different from the membrane mode, exists for a symmet-
ric bar in the class of even equilibrium modes if A < A, is the first eigenvalue of the
linearized problem, When ) becomes greater than A, the membrane solution loses sta-
bility and two new equilibrium modes are generated which are representable as a power
series in the parameter £ = } A — A,

Y1 () = F ecy, + 0 (&) (3.1)
where the constant ¢ is positive and determined by (3, 8),

Proof, Let us assume that an even nonzero solution of the problem (1.2), (1. 3)
exists for some A . Let us show that then A >> Ay, Multiplying (1.2) by the function

z2(s) = S yyVi—y—'dt

-1
and integrating with respect to s between -1 and 1, we obtain

A= [JO+ 27y’ (1) aresiny’ (1)]/ J® = Jy () (3.2)
1 EJy" 1
JO) = K —_—ds, JO = S y“ds
—.-‘1 Vi '—?}" -1

On the other hand, the eigenvalue A can be determined by means of the variational
principle 1 1
M=minJs (y), J2(¥) = & (S EJy"ds + 2')’1!"(1)) (3.3)

-1
where the minimurm is taken over the set of even smooth functions, It is easy to see
that J; (y) > J, (y) for all y. Hence, it follows from (3, 2) and (3, 3) that & > A,
The proof is analogous in the case of conditions (1, 4).

Let us apply the Liapunov-Schmidt method to investigate the bifurcation, Let us seek
the solution in the form of the power series
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o
Y == 2 8%yy, 8= ]/}, —Ag (3.4)
k==l
Substitution into Eq, (1.2) and the boundary conditions results in a chain of differential
equations o .
= (EJy1) + My = 0, Py, = 0 (3.9)

Pyy = — 1/27"0?!1”9/"1‘ — 3 EIy 'y —EJy" v — ' (3-6)

® ¢ ¢ ¢ & & v s ot & & # & F s B * s+ & + » 1 e € € € s ¥ 5 5 ¥

From (3, 5) we obtain that ¥1 == Clyy, where ¥y is the solution of the appropriate line-
ariged problem, and ¢ is an unknown constant which we determine from the condition
of solvability of Eq, (3.68). In the case of (1.4), for example, we obtain

1
i
= — - vogas (3.7)

]
1

S (Yahala' Vo™ + 3 (BTYS"Y ¥'ole” + ETs" (¥o'05")'] pods

Integrating by parts, and utilizing the boundary conditions, we obtain
= ‘%‘(S yg”dS) ( S yo"ds) >O (3.8)

The convergence of the series (3, 4) for sufficiemly small e.and the existence of the
equilibrium pair (3,1) now follow from (3, 8) and the known results of the Liapunov-
Schmidt method (see [7], say). The equality (3, 8) is true even in the support case (1,3),
Let us note that the requirement for evenness is essential, Solutions can exist in the
case (1, 3) for loadings less than the first critical number of the linearized problem,

For example, if y; =7y, = 0, a; = a, = a, then for A >» 0 there exist the odd

solutions y(s)=Fs V-m (3.9
while the first critical number equals. .

It is easy to show that for a symmetric bar the nonconservative problem (1.2), (1.6)
is reduced to the problem (1.2), (1. 3) by the substitution

— _..._}_v:..(}.}--——-— v 3)=y(s)~—-—}ﬂ——-.l-~—._-_.~
Yy =vis)+ aVi—-v" () ( a¥i—y" (1)

Therefore, here Theorems 2,3 and 3.1 are also true, However, in this case this does not
exhaust the question of bar buckling since the vibrational instability is also possible in
nonconservative systems, For example, this occurs when q; = v, = o0, @, = 9, = 0
(see [8]).

The question of the existence and stability of self-oscillating regimes merits separate
investigation, It can turn out that both types of buckling can occur for some values of
the parameters, In such a situation itis necessary to clarify to which of them the lesser
critical loading corresponds,

The authors are grateful to I, I, Vorovich and L, B, Tsariuk for valuable remarks,
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ON SHOCKWAVE PROPAGATICN IN AN ELASTIC

SPACE WITH FINITE DEFORMATIONS

PMM Vol, 34, N5, 1970, pp. 885-890
A, D, CHERNYSHOV
{Voronezh)
(Received January 28, 1970)

The influence of finiteness of the deformations and of the convective terms, in determin-
ing the medium velocity in terms of the displacements, on shockwave propagation in a
three~dimensional elastic medium is investigated, The Almansi tensor [1] is utilized as
the finite strain tensor, It is found that the quantity of shocks and their properties depend
strongly on the deformations of the medium ahead of the surface of strong discontinuity,
and on whether or not nonlinear terms in the rheological equations are taken into account,
Thus, propagation of three different shocks is possible in the case of small deformation
when these equations are written exactly, The particular case when the medjum is in
the undeformed state ahead of the shock is singular: all the qualitative results agree
with the results of the analogous linear problem, Expressions for the shock velocities are
obtained explicitly in particular cases,

1, Let us write the connection between the stress tensor ¢,; and the Almansi finite
strain tensor €;3 as

017 = hegpdyy + ey, ey = Yy (Ui + U — Cn,lineg) (1.1)

where A and p are the Lamé coefficients,u; the displacements of the medium particles,



