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Let us assume the accuracy to be 3% for the hypothesis of shear stresses, therefore e = 
= 0.03, Let us present values of p calculated from (3.4) for some values of & 
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ON THE STABLLITS OF CmSSED BARS 
PMM Vol. 34, NOS. 1970, pp. 877-884 
G. S. MARKMAN and V, I, NDOVICH 

(Rec&!$?“~o~? 1 97 0) 

The problem of the stability of an fncompeessible elastic bar of variable stiffness, com- 
pressed along the axis, is considered. The validity of UneariaatIon is proved, and the 
equilibrium modes after buckling are investigated. 

After reduction of the appropriate boundary value problem to an equation with a com- 
pletely continuous operator, a theorem of Krasnosei’skif p] on bifurcation can be applied. 
In utlllning this theorem the proof of the simplicity (or odd multiplicity) of the efgen- 
value of the coattpoadfng linearieed problem is the principal difficulty. 

The case of hinged supports of the bar ends was considered in fz]. In this case the 
linearixed equation is of second order;and t&e simplicity of the efgenvalues results from 
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the stem-~ouv~l~ theory. More complex support cases are considered herein (Sect. 2), 
and the spectrum of the differential equation Au = hBu must be investigated, where ~4 
is a fourth order differential operator, B is of second order. This equation reduces to 
the equation Nu = Xu, where N is a second order differential operator. A problem with 
non-Sturm boundary conditions can occur for this reduction. In this case, the results of 
Kalafati on second order differential operators p] can be used to prove the simplicity 
of the spectrum. 

Let us note that the validity of linearization in the plate stability problem was given 
a foundation by the author of [4] ( l ). 

The nature of the bifurcation of the even equilibrium modes of a symmetric bar is 
investigated in Sect. 3. It is shown by the tiapunov-Schmidt method that the membrane 
state of stress of the bar loses stability when the loading parameter becomes greater than 
the first eigenvdue of the linearized problem (Euler critical force). Two new equilib- 
rium modes hence occur. 

It has also been established that buckling is of Euler character: there are no other 
equilibrium modes, except the membrane mode, when the loading parameter is less 
than the Euler critical force. 

The example (3.9) shows that odd equilibrium modes can occur in the elastic support 
case for subcritical values of the loading parameter. 

1, Equlllbrlum rqurtlon And bouadrry eonditlon,, Let us consider 
an incompressible elastic bar of variable cross section, clamped elastically in elastic 
supports. The bar is compressed by two horizontal forces h applied to the ends. Let us 
introduce the following notation: E is the Young’s modulus of the bar material, s the 
arclength of the bar measured from some fixed point, j (s) the moment of inertia of 
the bar section at the point s. The function y (s) is the deflection of the bar measured 
from the membrane equilibrium state. 

The potential enef$y of a bent bar is 

+ ~j~~~~csi~~ y’(- 1) -+ rjprp arcsin y’ (1) (1.1) 

where a, > (l and a2 > 0 are the coefficients of elasticity of the supports, yt > 0 and 
.rs > 0 the coefficients of elasticity of the clamping. 

The condition of extremum of the energy &U = 0 results in the equflibrium equation 
d i d 

x l/i-_ 
, =__hd d EJy” 

ds v/1 - $2 ds 1/i-d” 
and the boundary conditions 

(1.2) 

d EJY" _ = - aly~l--y.“--hyJs__i, -L -x v’l - y’s 
EJyw = 

ds u’f - y- 
say Jfl --hy’ 1-i 

EJy" 

l/i- 
= rl arcsin y’ Is=_ir 

EJ:y” 
v/1 - y'" = - rsarcsiny’1,i (1.3) 

.) I. I, VOROVICH : Some Mathematical Questions of the Nonlinear Theory of Shells. 
Dissertation. Leningrad State University, 1958. 
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Inehcca#ofrfgjdcl~m~ng-clfbYMtrcadJofthebar(a]:=aj~r~=rg=aJ) 
the txuutdary con4woRs &re 

y(T+=y’(Tq-O (1.4) 
If the left end of the bar is rigidly clamped, and the right end is hinge supported 

(cx1~Tr=us=a3, rs=O}, wehave 

y (=F 1) = y’ (--1) = y” (1) = 0 (1.5) 
The problem under consideration is conservative for any of the boundary conditions 

(1.31, (1*4), (1.5). 
Let the bar be compressed by the follower forcer h applied to the ends, i.e. forces 

whose direction (at each instant) agrees with the tangent to the elastic line of the bar. 
Such a system is nonooneerv at&e, The boundary oondltlons hence are 

(f.6) 

2, On the bifurcation of tB6 equilibrium of a bar of vari&bfe 
rtiffarrr. 2.1. , Reduction to an operator equation. Thenonlinear 
equilibrium equation (1.2) is a part&&r case of the equation 

(EJy”Y -t- A!/” = f (s, Y, Y’, Y”, Y”‘, A) w 

f Iim 

\ 

i P, 4% e4’, WV W”, Q = 0 

t-a I ) 

where f 0, y* y’, y”, y”‘, A> is a function of its arguments contluuousty differenti- 
able for 1 s\ < 1 and saf?lclently smell y, y’, y”, 2”‘. 

inverting the linear part of the ~ffe~n~al operator (3.2) for X =O, we rtdtzce. each 
of the boundary value problems (1.3)-(1.6) to an operator equation of the form y f= 
= K (Y, k) with completely continuous operator in C(*) (--1,i) , 

For example, the operator K. in the cases (1.4), (1.5) is 
t 1 

(KY) (4 = - h 5 G (s. 5) y”(E)4 + 1 G ts, E) f t%, Y, Y’, Y”, Y”‘, Wf t2.2) 
-1 -1 

where G (s, %) is the GnenP function for these boundary conditions. The Ftichet dwi- 
vative of the operator K at the point y = 0 is a llnear operator 

(W ts) = --A 5 W,%WY%M% (2.3) 
-1 

According to the theorem of Krasnosel’skii p], each odd~multiple char#Xeristic num- 
ber of the operator d is a point ofbi~~~ of f&e operator K, where a continuous 
branch of the eigen&tas of the opeNor K corresponds to this bifurcation point. 

2.2.. Spectrum of the linear ptoblem and bifurcation, Tbeeigen- 
value problem for the operator (2.3) is evidently equivalent to the spectral problem for 
the Iinearlzed equation (~J~t’)” =z - ?+#I’ P.4) 

with linearized boundary conditions. Conditions (1.4) and (1.5) hence remafn unchanged, 
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but conditions (1.3) and (1.6) are reduced to the following: 

(EJy”)’ 3: - sly - hy’ Is=-i, (EJy”)’ = say - hy’ Is-i (2.5) 

EJy” = YlY’ I&, EJy” = - 7rY’ Is=1 
(EJY”) = - %Y Is=-it (EJy”)’ = azy Is-t (2.6) 

EJy” = TIY’ Is=& EJY” = - rsyr /e-l 

The existence of an infinite sequence of positive eigenvalues of Eq. (2.4) with the 
boundary conditions (2.5). (1.4). (1.5) results from known variational theorems [5]. 

Theorem 2.1. The problem (2.4), (1.5) has an infinite sequence of eigenvalues. 
All the eigenvalues are positive, simple, and are bifurcation points of the nonlinear ope- 
rator K. 

Proof. Integrating (2.4) twice we obtain 

E J# + hg - b,s + hep (2.7) 

Making the substitution y(s) = v(6) + cls + ca in the equations and boundary conditions, 
and eliminating the unknown constants cl and is, we obtain the equivalent Sturm-Liou- 

vi& problem EJ* + ‘xv _ O, u(-1) + 2u’(--1) = o,, v(i) = 0 (2.8). 

The corresponding Green’s function is oscillating (see Is]), and hence, all the eigen- 
values &e positive and simple. 

2.3’. Let us utilize the results of Kalafati p] in investiga~ng the problem (2.4), (1.4). 
The second order differential equation 

J% = AP ($1 Y 

L&J --“~k~(PY’~+!lY9 P(~)>O~ m:)>o (as;x(b) 

with the boundary conditions 

%I Y (a) + =I, Y’ (a> + Bll Y (Q + B1; Y’ (b) = 0 
h Y (~1 + %s ~8 (a) + pu Y (bj + psa YI (b) = 0 

is considered in this work. 

(2.9) 

The following sufficient conditions are given in p] for the Green’s function of the 
operator L to be an even or odd K-kernel, 

The matrix of the coefficients of conditions (2.9) is 

(2.10) 

Let the symbol (i, k) be the second order determinant of the matrix (2JO)into whose 
composition columns with the numbers 2 and k (i < k) enter, If the conditions 

{2,41 + 0, (2941 I- (1, 2)> 0 (2.11) 
are satisfied, the Green’s function of the operator L is an odd K-kernel. If 

(2,4) # 0, (2,4) + (W c 0 (2.12) 

the Green’s function is an even x-kernel. 
Theorem 2. 2. The problem (2.41, (1.4) has an infinite sequence of eigenvalues. 

All the eigenvalues are not more than double : 0 ( h, < & < ho 6 h, < . ..; the 
appropriate eigenvalue has no more rhan n + 3 zeros for even n,, and no more than 
n $- 2 zeros for cdd n in the interval (- 1, 1). 
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Proof. As ln the proof of Theorem 2.1, let ns turn to the conaider+ian of the second 
order problem 

EJv” + ?I+?? = 0, v(l) - u(-1) = Zv’@), u’fl) - v’f-1) = 0 (2.13) 

The boundary conditions of the problem (2.13) are non-Sturm conditions. It follows 
from (2.12) that the Green’s function of the operator EJv” is an even K-kernel. There- 
fore, all the eigenvalues are not more than double 

o<&<%<h,<~s< *** 

andftencethentheigenfunctionv*has not nfl zerosforevenn, andhas horn-l 
zeros for odd n. Hence, by Rolle’s theorem, we obtain an estimate of the number of zeros 
of the eigenfunction y,. 

2.4’. Let us consider a symmetric bar (J (9) =L J (- S)) compressed by horizontal 
forces h. Hence, a, = a, and y1 = ys in the appropriate boundary conditions (1.2) 
and (2.5). Writing the function f (s, y, y’, ZJ”? y”‘, 1) in Eqa. (1.2). it is easy to see 
that the operator (Fy) (9) = f(s, y, y’, y”, y”‘, A) transforms the even function 
Y (9) into even, and the odd into odd. &et ub) investigate symmetric equilibrium modes 
of the bar. To do this let us consider the problem (Z-4), (2.5) in the subspace of even 
functions* 

Theorem 2.3. The problem (2.4), (2.5) has an infinite sequence of eigenvalues 
in the subspace of even functions. All the eigenvalues are positive, simple, and a6bifur- 
cation points of the operator K. 

Proof. As in the preceding theorems, let us tnru to the equivalent prublem for%#O 

EJV” + hu = 0, YV’(O = liu(l), VI (0) = 0 (2.U) 

Let us show that the problem (2.14) can be reduced to a lo&d integral equation with 
monotonely increasing function cr (@and oscfllatfng kernel, Since Xs = 0 is an eigen- 
value of the problem (2.14), it is convenient to introduce the parameter p by setting 
J#=p- e. The problem (2.14) then becomes 

Bv s EJv” - 8~ = I”U, yv’ (1) + e u (1) = p” (1)~ Y’ (0) = 0 f2mi5:, 

The Green’s function af the boundary value problem (2.15) is 

(2.lr;) 

The functions vtand 17% satisfy the conditions 

Bu, = Bu, =9 0, yv,’ (1) + eul’ (1) = u,’ (0) = 0, vl u,’ - vl’vS = 1 

The solution of the problem (2.15) is 

Vo=~jG(J,a)VR~~-~~)olpt~) 
where 

tp tB = - G (s, 1) y-VU (1) 
Substituting (2.18) into (2.17). we obtain 

+ 

(2.17) 

(2.48) 
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The Green’s function G (s, E) is oscillating @I. The assertions of the theorem result 
from the theory of chargtid integral equations with oscillating kernel 163. 

Note. That the Green’s function of the problems (2.8) and (2.15) is oscillatory per- 
mits the proof that the nth eigenfunction of the problems (2.4), (1.5) and (2.4). (2.5) 
has no more than n zeros in the interval (-1, I). 

The relation 

Yn (8) - ?u’ 5 G (8, E) a dE (2.19) 

0 
follows from (2.4). 

According to the earlier proof, the function v&) has n zeros in the interval (-1,i). 
According to results of Krein [6JW it follows from (2.19) that #(s) has no more than ns 
zeros in the interval (-1, 1). 

The problem (2.4). (1.4) can be examined separately in subspaces of even and odd 
functions. Theorems analogous to Theorem 2.3 are obtained in such an investigation 
of the symmetric and antisymmetric equilibrium modes of a bar, 

3. Bifurcation, Theorem 8.1, In the case of the support conditions (1.3) 
and (1,4), no equilibrium mode different from the membrane mode, exists for a symmet- 
ric bar in the class of even equilibrium modes if h < h, is the first eigenvalue of the 
linearized problem. When i becomes greater than A,, the membrane solution loses sta- 
bility and two new eq~~b~urn modes are generated which are representable as a power 
series in the parameter 8 = Jlh - ho 

Y1,2 (4 = =F 8 q/o + 0 (E2) (34 
where the constant c is positive and determined by (3.6). 

Proof. Let us assume that an even nonzero solution of the problem (1.2), (1.3) 
exists for some h . Let us show that then h > &,, Multiplying (1.2) by the function 

z(s) = 5 y’VW& 
-1 

and integrating with respect to s between -1 and 1, we obtain 

h = [J(l) + 2yy’ (1) arcsin y’ (1)] / J2) -= J1 (Y) (3.2) 

Cm the other hand, the eigenvalue hocan be determined by means of the variational 
principle 

h o=minJd~h &W=-$(.\ ’ EJy”ds $27’~” (1)) (3.3) 
-1 

where the minimum is taken over the set of even smooth functions. It is easy to see 
that JI (y) > J, (y) for all y. Hence, it follows from (3.2) and (3.3) that h > ho. 
The proof is analogous in the case of conditions (1.4). 

Let us apply the ~a~nov-Schmidt method to investigate the bifurcation. Let us seek 
the solution in the form of the power series 
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Subatitntion into Eq. (1.2) and the boundary condftions result8 in a chain of diff&endal 
equations 

. ..**......*.r.rrr*.*~...~~“.~.~~ 

From (3.5) we obtain that Yl = Cyo, where ~01s the solution of the -appropia& line- 
ar&red problem, and .c is an unknown constant which we determine from the con&Won 
of @vability of Eq. (3.8). In the case of(1.4), for example, we obtain 

1 

ca = - + 
s 

yf#@% (3.7) 
-1 

1 

f= \ 
A 

t%~oyo%” + 3 Wy,“) y’oyo” + EJye* (yo’yo*)‘j y&s 

Integradng by -parts, and utftining the boundary condit&ns, we obtain 

(3.8) 

The convergence of the series (3.4) for sufficiently small e >and the existence of the 
equilibrium pair (3.1) now follow &om (3.8) and the known results of the Liapunov- 
Schmidt method (see jJ7], say). The equality (3.3) is true even in the support case (1.3), 
Let us note that the requirenient for evenne35 ts agaatral Solutions can eldst in the 
case (1.3) for loadings less than the first crftlcal number of the linearized problem. 
For example, if y1 “y2 = 0, a, = a, = a, then for h > 0 there exist the odd 
SO1 lItiOnS 

Y (4 = TsyT=mm-- (3.9) 
while the first critical number equals a. 

It is easy to show that for a symmetric bar the mwmrvadvc problem (1.2). (1.6) 
is reduced to the probl&m (I. 2), (1.3) bv the substitution 

Therefore, here Theorems 2.3 and 3.1 are also true. However, in this case this does not 
exhaust the question of bar buckling since the vibrational instability is also possible in 
nonconservative systems. For example, this occurs when ur = rr = 00, a, = y* =; 0 

We PI). 
The question of the existence and stabitity of self-oscillating regimes mu&s separate 

investigation, It can t@rn out that both types of buckling cau occur f@ some values of 
the parameters. In such a situation it is necessary to clarify to which of them the lever 
critical loading corresponds. 

The authors are grateful to I. I. Vorovich and I,. B. Tsar&k for valuable remarks. 
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ON SHOCKWAVE PROPAQATION IN AN ELASTIC 
SPACE WITH FINITlE DEFORBIATIONS 

PMM Vol, 34, W5, 3970, pp. 885-890 
A. D. CH~SHOV 

(Voronezh) 
(Received January 28, 1970) 

The influence of finiteness of the deformations and of the convective terms, in determin- 
ing the medium velocity in terms of the displacements, on shockwave propagation in a 
three-dimensional elastic medium is investigated. The Almansi tensor p] is utilized as 
the finite strain tensor. Xt is found that the quantity of shocks and their properties depend 
strongly on the deformations of the medium ahead of the surface of strong d~~n~n~~, 
and on whether or not nonlinear terms in the rbeological equations are taken into account. 
Thus, propagation of three different shocks is possible in the case of small deformation 
when these equations are written exactly. The particular case when the medium is in 
the undeformed state ahead of the shock is singular: all the qualitative results agree 
with the results of the analogous linear problem. Expressions for the shock velocities are 
obtained explicitly in particular cases. 

1, Let us write the connection between the stress tensor btf and the Almansi finite 
strain tensor eij as 

Gil = hel, R&f + zpeij, etf = ‘/% @t,j + U1.t - WrlWt) W 

where h and p are the Lame’ coefficients,ut the displacements of the medium particles. 


